Definition: The operation allowed by q. physics is called Unitary transformation $U$
$U:|\psi_{in}\rang\rightarrow|\psi_{out}\rang=U(|\psi_{in}\rang)$
Necessary conditions (properties) for $U$ to be a valid quantum operation:
Linear property (for any $U$):
$U(\alpha|\psi_1\rang+\beta|\psi_2\rang)=\alpha U(|\psi_1\rang)+\beta U(|\psi_2\rang)$
Length preservation (For all possible state $|\phi_{in}\rang$):
$\lang \phi_{out}|\phi_{out}\rang=\lang\phi_{in}|U^\dagger\cdot U|\phi_{in}\rang=\lang\phi_{in}|\phi_{in}\rang=1$
<aside> 💡
Example:
</aside>
$H=\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\1&-1\end{pmatrix}$ is the Hadamard gate (unitary matrix)
<aside> 💡
Example:
</aside>
<aside> 💡
Proof:
</aside>