<aside> 💡
Shorthand notion: $P_X=P_X(X=x)=P_X(x)$
</aside>
If $P$ is a distribution and $X$ is a random variable, we will write $X\sim P$ to indicate that the distribution of $X$ is $P$
Consider $X$, $Y$ are both RVs, sometimes we will write $X\sim Y$, to indicate that $X$, $Y$ have the same distribution.
<aside> 💡
Example:
Let the finite set $X=\{1,2,3,4,5,6\}$ correspond to the faces of a six-sides die.
If the die is fair, then $\forall x \in X,~P_X(x)=\frac{1}{6}$ ($P_X=\frac{1}{6}$)
The size of range of $X$ is $\left|x\right|=6$
</aside>
The joint distribution (联合分布) of $X$, $Y$ is denoted by function: $P_{XY}(·,·):x\times y\rightarrow [0,1]$
The marginal distribution (边缘分布/ 边际分布) of $X$: $P_X(x)=\sum{}{y\in Y}P{XY}(x,y)$
Conditional Probability:
<aside> 💡
Example
Let $Y\in y=\{"fait","unfair"\}$ refers to the choice of either fair die or an unfair die, chosen with equal probability:
$P_Y(fair)=P_Y(unfair)=\frac{1}{2}$
If $X$ denotes the fair or unfair, where the unfair die always rolls “6”, that is, $x=\{1,2,3,4,5,6\}$ with $P_X(6)=1,~P_X(x)=0(\forall x=1,2,3,4,5)$;
For the fair die, $P_X(x)=\frac{1}{6},~\forall x=1,2,3,4,5,6.$
Correlation function